A case study of electro-hydraulic loading and testing technology for composite insulators based on iterative learning control

Author:

Wang Shou-Kun1,Wang Jun-Zheng1,Zhao Jiang-bo1

Affiliation:

1. Key Laboratory of Intelligent Control and Decision for Complex System, Beijing Institute of Technology, Beijing, People’s Republic of China

Abstract

In order to simulate the vibrating condition of composite insulators in breeze, and carry out its fatigue test under loading and vibrating conditions, the electro-hydraulic loading and testing technology for the composite insulators is researched in this study. A compound electro-hydraulic loading system is first designed, including two subsystems, the static proportional loading system and the dynamic servo loading system. Then, the working principle based on this system is analyzed, and the mathematic model of electro-hydraulic servo system is also built, proved to be an inertial element with high gain. The control method based on proportional–derivative-type iterative learning control has been applied to such a dynamic servo loading system, to achieve the high-precision control for dynamic load force with repetitive regularity. Both mathematic simulation and actual experiments have been designed and carried out, and their results proved that the load principle and the control method are feasible and applicable and have the ability of achieving high-precision control effects. Based on this discussed electro-hydraulic technology, an actual electro-hydraulic loading and testing system for different kinds of composite insulators has been researched and developed, with the advanced technology indices of six loading channels, 20 kN maximum dynamic force, 0.3 kN force control precision and 100 Hz maximum vibrating frequency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3