Robust trajectory modification for tip position tracking of flexible-link manipulators

Author:

Atashzar S F1,Talebi H A1,Shahbazi M1,Towhidkhah F2,Yazdanpanah M J3

Affiliation:

1. Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran

3. Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Abstract

This paper presents a composite controller for tip position tracking of flexible link manipulators. The main control challenge for flexible link manipulators is the non-minimum phase characteristics of the system. In this regard, an inner/outer control structure is proposed. As opposed to previous research in this area, the desired reference trajectory is robustly modified in an online scheme to minimize the tip tracking error utilizing the outer controller. The outer trajectory modifier is a [Formula: see text] synthesis based controller which modifies the reference trajectory of the inner loop in the uncertain situations. The inner loop controller is based on the Lyapunov redesign feedback linearization (LRFL) approach which is applied to alleviate the degrading effects of uncertainties and non-linearities presents in the dynamics of the flexible-link manipulator. In the inner loop, a conventional redefined output namely ‘close to the tip’ is considered to avoid the difficulties associated with the non-minimum phase behaviour of the main output (the tip). Conventional control strategies based on this choice of outputs lead to undesirable oscillations in the tip position. However, these oscillations are considerably minimized by applying the proposed outer loop trajectory modifier. Experimental and Simulation results are presented to illustrate the significant improvements in tip tracking performance over the conventional methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparison between gain-scheduling linear quadratic regulator and model predictive control for a manipulator with flexible components;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2022-04-05

2. Fundamental methodologies for control of nonlinear nonminimum-phase systems: An overview;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2014-05-29

3. A force observation method for tracking control of flexible-link manipulators;Robotica;2012-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3