An energy management platform for micro-grid systems using Internet of Things and Big-data technologies

Author:

Elmouatamid Abdellatif12ORCID,NaitMalek Youssef13,Bakhouya Mohamed1,Ouladsine Radouane1,Elkamoun Najib2,Zine-Dine Khalid2,Khaidar Mohammed2

Affiliation:

1. ECINE, LERMA Lab, Faculty of Computing and Logistics, International University of Rabat, Sala Al Jadida, Morocco

2. CUR“EnR&SIE”, LAROSERI Lab, STIC Lab, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco

3. ENSIAS – Mohammed V University, Rabat, Morocco

Abstract

Micro-grid systems have been recently emerged for efficient integration and management of renewable energy sources, buildings’ equipment (e.g. ventilation; lighting; heating, ventilation, and air conditioning), and energy storage devices. The intermittent nature of the produced electricity from renewable energy sources constitutes, however, the main challenge for their seamless integration into buildings. Recent studies stated that storage devices, despite their actual high cost, could be used to tackle this issue by balancing between the variability of renewable energy sources production and the unpredictable building’s occupancy. However, managing the power flows in micro-grid systems is highly required in order to minimize the consumption from the electric grid while ensuring the quality and the reliability of electrical services. In this article, a micro-grid system platform is introduced for efficient integration and management of renewable energy sources and storage devices. The platform’s architecture is composed of three main components: (a) the power generation components that integrate the renewable energy sources together with the storage devices and the traditional electrical grid, (b) an advanced metering component for data gathering and analysis, and (c) control services for power flow management. The platform was developed and deployed in a real-setting scenario. Simulations and experimentations have been performed and results show the usefulness of the proposed platform for efficient management of the deployed micro-grid system.

Funder

United States Agency for International Development

project smart Micro-Grid system

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3