Robust backstepping control of double-rod cylinder for motion synchronization of mold oscillator

Author:

Zhao Jiangbo1,Sun Xiaodong1,Zhao Liang1,Wang Junzheng1

Affiliation:

1. Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing, China

Abstract

High-performance synchronization control of two double-rod cylinders used to oscillate the mold of a continuous casting machine is considered in this article. Friction between strand shell and mold plays an important role to achieve high-precision control of mold oscillator. A new friction model is proposed for exact system modeling and is proved useful. Using a force-distribution method to consider the coupling effect between two cylinders, mathematical models of each cylinder are presented and a simple robust backstepping control strategy is proposed, which can reduce the influences of time-varying system parameters and unmodeled uncertainties. The transient performance and stability of the proposed controller are rigorously proved. Simulation and experimental results show that proposed synchronization control method can achieve good performance for given tracking task.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on decoupling control of single leg joints of hydraulic quadruped robot;Robotic Intelligence and Automation;2024-04-17

2. Practical profile tracking for a hydraulic press using sliding mode controller;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-05-31

3. Marine diesel engine speed control based on adaptive state-compensate extended state observer-backstepping method;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2018-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3