Algorithms of reduced complexity to design control sequences for untimed Petri nets in varying and uncertain environments

Author:

Lefebvre Dimitri1ORCID

Affiliation:

1. GREAH – Normandie University, UNIHAVRE, Le Havre, France

Abstract

Petri nets have been widely used for the modelling, analysis, control and optimization of discrete event systems with shared resources in the domains of engineering. This article concerns the design of control sequences for such systems modelled with untimed Petri nets. The aim of the controller is to incrementally compute sequences of transition firings with minimal size. Such sequences aim to move the marking from an initial value to a reference value. The resulting trajectory must avoid some forbidden markings and limit as possible the exploration of non-promising branches. For this purpose, the approach explores a small part of the reachability graph in the neighbourhood of the current marking. Then from the explored markings, it estimates a distance to the reference. The main contributions are (a) to reduce the explored part of the reachability graph according to a double limitation in breadth and in depth in order to provide solutions with a low computational effort; (b) to provide conditions to ensure the converge and optimality of the proposed algorithms and derive necessary and sufficient conditions for reachability; and (c) to include the firing sequence design in a global control schema suitable for reactive scheduling problems in uncertain and perturbed environments. The main application concerns deadlock-free scheduling problems in the domain of flexible manufacturing systems, but the approach is also applicable for systems in computer science and transportation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3