Friction fault diagnosis and fault tolerant control for electronic throttles with sliding mode and adaptive RBF estimator

Author:

Li Shoutao1,Shi Yiran1,Zhai Yujia2,Wang Shuangxin3,Tian Yantao1,Yu Ding-Li4ORCID

Affiliation:

1. School of Communication Engineering, Jilin University, Changchun, China

2. Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China

3. College of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing, China

4. Control Systems Research Group, Liverpool John Moores University, Liverpool, UK

Abstract

The change of throttle viscous and coulomb frictions often cause inaccuracy or malfunction in electronic throttles, and lead to degradation of reliability of vehicles with internal combustion engines. A fault detection fault tolerant control scheme is proposed in this work to tackle the problem. A nonlinear dynamic model is derived for the throttle. A disturbance observer is designed based on the model to diagnose the fault, and a sliding mode control combined with an adaptive neural network estimator is developed for fault tolerant control. The system stability is ensured after the fault occurs and the throttle position tracking is maintained by the applied Lyapunov method. A Simulink model is developed for the throttle with real physical parameters to evaluate the performance. Abrupt and incipient changes are simulated in the throttle friction torque and the simulation results show that the developed method is effective in fault diagnosis and fault tolerant control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault detection and identification for rolling mill main drive system based on integrated observer under iterative learning strategy;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3