Semi-empirical model for a hydraulic servo-solenoid valve

Author:

Ferreira J A1,de Almeida F Gomes2,Quintas M R2

Affiliation:

1. University of Aveiro Department of Mechanical Engineering Portugal

2. University of Porto IDMEC-Po1o FEUP Portugal

Abstract

High-performance proportional valves, also called servo-solenoid valves, can be used today in closed-loop applications that previously were only possible with servo-valves. The valve spool motion is controlled in a closed loop with a dedicated hardware controller that enhances the valve frequency response and minimizes some non-linear effects. Owing to their lower cost and maintenance requirements as well as increasing performance they can compete with servo-valves in a large number of applications. This paper describes a new semi-empirical modelling approach for hydraulic proportional spool valves to be used in hardware-in-the-loop simulation experiments. The developed models use either data sheet or experimental values to fit the model parameters in order to reproduce both static (pressure gain, leakage flowrate and flow gain) and dynamic (frequency response) valve characteristics. Valve behaviour is divided into two parts: the static behaviour and the dynamic behaviour. A parameter decoupled model, with a variable equation structure, and a flexible model, with a fixed equation structure, are proposed for the static part. Spool dynamics are modelled by a non-linear second-order system, with limited velocity and acceleration, the parameters being adjusted using optimization techniques.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Reference11 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3