Gear fault diagnosis using energy-based features of acoustic emission signals

Author:

Al-Balushi K R1,Samanta B1

Affiliation:

1. College of Engineering Sultan, Qaboos University Department of Mechanical and Industrial Engineering Muscat, Sultanate of Oman

Abstract

In this work, energy-based features are introduced for monitoring and diagnosis of machine conditions in spite of speed and load variations. The basic feature, termed here the energy index (EI), is a statistical measure of relative energy levels of segments of a time domain signal over a cycle. The properties of the EI are discussed and its different forms are derived. A procedure is presented for fault diagnosis of gears using the proposed features. As an illustration, time domain acoustic emission (AE) signals of a test gearbox have been processed to extract these features and to test their relative significance in the diagnostic process. The proposed technique is compared with some of the existing methods using the same AE data for early fault detection. The applicability of the proposed technique is also studied using a set of vibration data of a helicopter drivetrain system gearbox. The results show the effectiveness of the proposed features in monitoring and diagnosis of machine conditions, with the capability of early fault detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust fault detection for gearbox failure;2022 26th International Conference on System Theory, Control and Computing (ICSTCC);2022-10-19

2. Adaptive Driving Assistant Model (ADAM) for Advising Drivers of Autonomous Vehicles;ACM Transactions on Interactive Intelligent Systems;2022-07-26

3. An efficient diagnosis approach for bearing faults using sound quality metrics;Applied Acoustics;2022-06

4. Use of Cyclostationarity Based Condition Indicators for Gear Fault Diagnosis Under Fluctuating Speed Condition;Applied Condition Monitoring;2017

5. Diagnosis of gear damage based on coefficient of variation method by analyzing vibration accelerations on one gear tooth;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3