Development of a digital control system for a belt-driven starter generator segmented switched reluctance motor for hybrid electric vehicles

Author:

Chen Long1,Wang Haoxiang1,Sun Xiaodong1ORCID,Cai Yingfeng1,Li Ke2,Diao Kaikai1,Wu Jiangling1

Affiliation:

1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China

2. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China

Abstract

A novel four-phase 16/10 belt-driven starter generator segmented switched reluctance motor has been proposed in a previous work to reduce torque ripple and increase the fault tolerance ability. Based on the previous research, the segmented switched reluctance motor digital control system is designed and presented. The digital control system including a power converter, detection circuits, and protection circuits is introduced in detail. For detection circuits, the half-detection method is employed to decrease the cost of the system. In addition, based on MicroAutoBox DS1401, a rapid control prototype platform is established. With this software system, it is easy to transfer control models and realize real-time control directly. Then, the speed closed closed-loop control for the segmented switched reluctance motor is applied to verify the proposed system. It contains current chopper control at a low speed and angle position control at a high speed. The simulation results are given, including the flux, current, torque, and efficiency range over the entire speed range of the segmented switched reluctance motor. Finally, the experimental results are presented to verify the simulation results and the effectiveness of the system. It can be found that the simulation and experimental results are consistent and acceptable, which means that the proposed digital system can operate naturally and accurately under speed closed loop control. Hence, the proposed digital system has high compatibility and practicability.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3