Fault diagnosis and estimation for near-space hypersonic vehicle with sensor faults

Author:

Shen Q12,Jiang B1,Cocquempot V3

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People’s Republic of China

2. College of Information Engineering, Yangzhou University, Yangzhou, People’s Republic of China

3. Sciences and Technologies, Lille 1 University, Villeneuve d'Ascq, France

Abstract

This paper addresses a practical issue in fault diagnosis and estimation for a near-space hypersonic vehicle (NSHV) with sensor faults. First, the Takagi–Sugeno (T–S) fuzzy model is established to represent the NSHV non-linear dynamics, and sliding mode observers (SMO) are designed to generate a bank of residuals. Then, a novel sensor fault model is proposed, which contains time-varying bias faults and time-varying gain faults. Further, based on the Lyapunov stability theory, novel fault diagnostic algorithms are given to estimate the sensor fault, which removes the two classical assumptions in existing works that the time derivative of the output errors should be known and that the system states should be bounded. In addition, a sufficient condition for the existence of SMO is derived in the sense of the Lyapunov stability theory, which can be easily solved by Matlab® LMI toolbox. Finally, simulation results are presented to demonstrate the efficiency of the proposed approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3