Embedded predictive control strategy based on Internet of Things technology: Application to a thermal process under imperfect wireless network

Author:

Kouki Rihab1ORCID,Salhi Hichem1,Bouani Faouzi1

Affiliation:

1. Laboratoire Analyse, Conception et Commande des Systèmes, Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, Tunis, Tunisie

Abstract

This article is concerned with the design of wireless-networked control framework based on Internet of Things technology and predictive control strategy to remote control a thermal benchmark system. In order to improve the control performance of systems, an autonomous real-time solution is proposed for handling network problems. The adopted control strategy is divided into two cooperative parts under a master–slave architecture, in which two STM32 microcontrollers are investigated. The slave board is connected closely to the process and the master one is a distant controller. The microcontrollers communicate wirelessly through the Transmission Control Protocol/Internet Protocol. In the master board, a model predictive output-estimator-based controller is designed to control wirelessly the benchmark system, even though the incoming outputs from the slave board are lost. However, a buffered structure is implemented on the slave board to compensate the input losses of the arrived control sequences. The performance of the proposed wireless-networked predictive control compensation strategy for packet loss and perturbation handling in the wireless-networked control system in this work is verified through different experimentation conditions. Also, a comparative study with a wireless-networked proportional integral controller is performed to demonstrate the effectiveness of wireless-networked predictive control strategy for practical Internet of Things applications.

Funder

Tunisian Ministry of High Education and Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3