Affiliation:
1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
2. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, China University of Mining and Technology, Xuzhou, China
Abstract
Tension difference between ropes due to asynchronous hoisting, guide rail tilt, and friction jam restricts the application of double-rope winding hoisting systems that have high-security requirement. In this article, a hybrid adaptive iterative learning control scheme is presented for a double-rope winding hoisting system driven by permanent magnet synchronous motor systems. First, based on the discrete model of the wire rope, the mathematical model of the system is established. Subsequently, in order to reduce the tension difference of the wire ropes under impact, a hybrid control scheme based on iterative learning control and radial basis function neural network is proposed to improve the performance of the controller. A radial basis function neural network–based adaptive law is developed to compensate the uncertainties of the movable headgear sheave subsystem, and radial basis function neural network–based switching gains are applied to improve the disturbance compensation speed of the iterative learning controller. Stability of the overall closed-loop system under proposed controller is proved. Finally, the experimental results show that the proposed controller is effective and has better performance than traditional controllers.
Funder
Program for Changjiang Scholars and Innovative Research Team in University
National Basic Research Program of China
National Key Research and Development Program
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献