Robust steering control for trajectory following in road traffic environments

Author:

Deshpande Parth1ORCID,Devika KB1ORCID,Subramanian Shankar C1ORCID,Vanajakshi Lelitha Devi2

Affiliation:

1. Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India

2. Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

The process of modelling vehicle motion in a road traffic environment requires the integration of trajectory generation with vehicle control. The steps involved here are generating a feasible trajectory based on the existing traffic and tracking the trajectory to control it with a steering angle input. Since the parameters of a physical system vary with changes in operating conditions, it is important to consider robustness when designing controllers. This article aims at developing a trajectory-following model with robust steering control strategies to accurately follow a generated trajectory. In this study, performance-based proportional, robust proportional and sliding mode control strategies are designed for trajectory following. The robustness of the proportional controller is established using Kharitonov’s theorem, which is compared with a proportional controller tuned for performance. Sliding mode control is designed for robustness and chattering elimination using two kinds of reaching laws – a constant reaching law and a novel power rate exponential reaching law. The controllers are designed using a dynamic bicycle model considering the error with respect to the trajectory. The controllers are then evaluated in IPG CarMaker®. The resulting trajectories and control inputs are compared for the considered control methodologies using the ISO double lane change and the Slalom tests. Sliding mode control with power rate exponential reaching law is concluded to be more robust as compared to the other controllers, with lower response times, up to 84% lower heading angle deviations from the trajectory and an overshoot of only 3.2% in lane changing.

Funder

Ministry of Skill Development and Entrepreneurship, Government of India

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

1. Global status report on road safety 2018: summary. Technical report, World Health Organization, Geneva, 2018.

2. Road accidents in India – 2018. Technical report, Transport Research Wing, Ministry of Road Transport and Highways, Government of India, New Delhi, India, September 2019.

3. A dynamic lane-changing trajectory planning model for automated vehicles

4. Vehicle Path Generation and Tracking in Mixed Road Traffic

5. Nested PID steering control for lane keeping in autonomous vehicles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3