Fault indicators and unique mode-dependent state equations from a fixed-causality diagnostic bond graph of linear models with ideal switches

Author:

Borutzky Wolfgang1

Affiliation:

1. Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany

Abstract

Analytical redundancy relations are fundamental in model-based fault detection and isolation. Their numerical evaluation yields a residual that may serve as a fault indicator. Considering switching linear time-invariant system models that use ideal switches, it is shown that analytical redundancy relations can be systematically deduced from a diagnostic bond graph with fixed causalities that hold for all modes of operation. Moreover, as to a faultless system, the presented bond graph–based approach enables to deduce a unique implicit state equation with coefficients that are functions of the discrete switch states. Devices or phenomena with fast state transitions, for example, electronic diodes and transistors, clutches, or hard mechanical stops are often represented by ideal switches which give rise to variable causalities. However, in the presented approach, fixed causalities are assigned only once to a diagnostic bond graph. That is, causal strokes at switch ports in the diagnostic bond graph reflect only the switch-state configuration in a specific system mode. The actual discrete switch states are implicitly taken into account by the discrete values of the switch moduli. The presented approach starts from a diagnostic bond graph with fixed causalities and from a partitioning of the bond graph junction structure and systematically deduces a set of equations that determines the wanted residuals. Elimination steps result in analytical redundancy relations in which the states of the storage elements and the outputs of the ideal switches are unknowns. For the later two unknowns, the approach produces an implicit differential algebraic equations system. For illustration of the general matrix-based approach, an electromechanical system and two small electronic circuits are considered. Their equations are directly derived from a diagnostic bond graph by following causal paths and are reformulated so that they conform with the matrix equations obtained by the formal approach based on a partitioning of the bond graph junction structure. For one of the three mode-switching examples, a fault scenario has been simulated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-Based Single-Fault Disambiguation Using Temporal Information and Genetic Algorithm: A Case Study on Hydraulic Drive System;Arabian Journal for Science and Engineering;2024-01-26

2. Implementation of a Cascade Fault Tolerant Control and Fault Diagnosis Design for a Modular Power Supply;Actuators;2023-03-22

3. Bond graph modeling and multi-body dynamics of a twin rotor system;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2020-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3