A finite-time path-tracking control algorithm for nonholonomic mobile robots with unknown dynamics and subject to wheel slippage/skid disturbances

Author:

Taghavifar Hamid1ORCID,Hu Chuan2

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

Path planning and tracking control are two performance-critical tasks for wheeled mobile robots, particularly when nonholonomic constraints are imposed on robots in dynamically uncertain conditions. Accomplishing certain performance and safety considerations related to path-tracking, such as global stability, transient performance, and smooth finite-time convergence, becomes more difficult for nonholonomic robots. This paper is concerned with proposing a new adaptive robust finite-time tracking control approach for a large class of differential drive autonomous nonholonomic wheeled mobile robots (NWMRs) that are subject to structured uncertainties and extraneous disturbances with fully unknown dynamics. For this purpose, nonlinear kinodynamics of a type of rear-wheel drive NWMRs are developed by incorporating the skid/slippage constituents of the wheel motion. Then, a path-tracking controller is proposed using a continuous finite-time adaptive integral sliding mode control coupled with an integral backstepping approach (FTAISM-IBC). For the adaptive controller design, the entire nonlinear dynamics of the robot, including nonlinear vector functions and control gain functions, together with extraneous disturbances, are estimated by leveraging the universal approximation capabilities of radial basis neural networks (RBFNNs). The finite-time stability proof is presented by utilizing the Lyapunov stability theorem. Furthermore, the adaptive gains are derived to ensure the finite-time stability of the system subject to unknown functions, parametric variations, and unknown but bounded disturbances. Finally, the effectiveness of the proposed controller is evaluated through simulations in terms of several key performance indicators against several reported studies.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3