Manifold semi-supervised learning for aluminum electrolysis temperature identification based on regularized hierarchical extreme learning machine

Author:

Lei Yongxiang1ORCID,Liu Fang2,Karimi Hamid Reza1ORCID,Chen Xiaofang1

Affiliation:

1. Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy

2. School of Physics and Electronics, Central South University, Changsha, China

Abstract

The aim of this article is to develop a soft approach for a real-time cell temperature prediction in the aluminum electrolysis reduction. Under the limited labeled data constraint, Laplacian semi-supervised learning methods, which can fully utilize the underlying structure of the data distribution and further extract information contained in all available data, has recently received extensive attention in the field of soft sensor modeling. Since the Laplacian underlying manifold is a constant, it remains a challenging task to improve the extrapolating ability for the case that only a few labeled samples are available. This study presents a soft modeling method based on a semi-supervised deep learning structure, which was developed from the hierarchical autoencoders with extreme learning machine. Furthermore, a Laplacian–Hessian semi-supervised extreme learning machine is built to learn all the geometric distribution information. The Laplacian–Hessian semi-supervised extreme learning machine method is applied to estimate the cell temperature in an aluminum reduction process. The experimental results demonstrate the performance and robustness of the proposed algorithm are superior to those of the existing state-of-the-art methods.

Funder

National Natural Science Foundation of China

national natural science foundation of china

china scholarship council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3