Affiliation:
1. Industrial Engineering Department (DIEF), University of Florence, Florence, Italy
2. Department of Energy, Systems, Territory and Constructions Engineering (DESTEC), University of Pisa, Pisa, Italy
Abstract
This article presents a set of algorithms for the estimation of state of charge, specifically deployed for lithium-ion batteries. These algorithms are based on appropriate battery models. These models can be developed having different levels of accuracy, also including the possibility to correctly represent the hysteresis voltage behaviour of the selected lithium cells. In addition, different identification methods of the battery model parameters may also be considered, considering tabulated parameters, calibrated in previous tests, or online parametrization tools. State of charge is then evaluated using non-linear Kalman filter techniques. Effectiveness of identification methods, also with the performance offered by Kalman filter itself, has been accurately evaluated through experimental tests. To verify the robustness of the proposed algorithms, some disturbances were introduced and evaluation was also conducted at different state of charge initial conditions and sampling times.
Subject
Mechanical Engineering,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献