Towards simultaneous localization and mapping tolerant to sensors and software faults: Application to omnidirectional mobile robot

Author:

Kellalib Billel1ORCID,Achour Nouara1,Coelen Vincent2,Nemra Abdelkrim3ORCID

Affiliation:

1. LRPE Laboratory, USTHB University, Algiers, Algeria

2. CRIStAL, Polytech Lille, Villeneuve-d’Ascq, France

3. Laboratoire des Vehicules Autonomes Intelligents, Ecole Militaire Polytechnique (EMP), Algiers, Algeria

Abstract

In the last few years, simultaneous localization and mapping became an important topic of research in the robotics community. This article proposes an approach for autonomous navigation of mobile robots in faulty situations. The main objective is to extend the fault tolerance strategy to simultaneous localization and mapping in presence of sensor faults or software faults in the data fusion process. Fault detection and isolation technique is performed based on duplication–comparison method and structured residuals. The proposed fault tolerance approach is based on the extended Kalman filter for simultaneous localization and mapping when an absolute localization sensor is available. The validation of the proposed approach and the extended Kalman filter for simultaneous localization and mapping algorithm is performed from experiments employing an omnidrive mobile robot, equipped with embedded sensors, namely: wheel encoders, gyroscope, two laser rangefinders and external sensor for the absolute position (indoor global positioning system). The obtained results demonstrate the effectiveness of the proposed approach where it was found that its fault tolerance performance is based essentially on the selected residuals and the values of the fault detection thresholds to be used for the fault detection and isolation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3