Performance evaluation of electric vehicle brushless direct current motor with a novel high-performance control strategy with experimental implementation

Author:

Dahbi Mohamed12ORCID,Doubabi Said1,Rachid Ahmed2,Oulad-Abbou Driss12

Affiliation:

1. Laboratory of Electrical Systems and Telecommunications, Applied Physics Department, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco

2. Laboratory of Innovative Technologies, University of Picardie Jules Verne, Amiens, France

Abstract

In this article, a new control strategy for electric vehicle battery autonomy and performance improvements is proposed. This method is based on the use of a DC-DC converter combined with a brushless DC motor as an electric vehicle propulsion engine. First, an analysis of the three-phase brushless DC motor performance based on analytical modeling is addressed. This model stands on the derivative of the commutated and non-commutated phase currents from which the speed response is induced. The proposed model presents different brushless DC motor pulse width modulation control modes and allows highlighting the most appropriate mode with lower current ripple and power loss, higher efficiency and faster response. Furthermore, a DC-DC boost converter is integrated in the motor control scheme, to describe after, how the electric vehicle performance is increased when implementing this control mode. Evaluation of the analytic results has been validated through simulations on MATLAB/Simulink. The evaluation focuses on speed response for different pulse width modulation control modes, current ripple rate in addition to the electric vehicle performance with and without DC-DC converter. In addition, an experimental validation using a laboratory designed platform is performed. The proposed method demonstrates a better electric vehicle performance in terms of increasing the battery autonomy and speed range.

Funder

RESEARCH INSTITUTE IN SOLAR ENERGY AND NEW ENERGY - IRESEN

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3