Equilibrium point, exponential stability and synchronization of numerical fractional-order shunting inhibitory cellular neural networks with piecewise feature

Author:

Luo Huan1ORCID,Zhang Tianwei2

Affiliation:

1. Oxbridge College, Kunming University of Science and Technology, Kunming, China

2. Yunnan University, Kunming, China

Abstract

In recent years, exponential Euler difference methods for first-order semi-linear differential equations have been developed rapidly, and various exponential Euler difference methods have become a very important research topic. For fractional-order shunting inhibitory cellular neural networks with time lags, this article first establishes a new difference method named Mittag-Leffler Euler difference, which includes exponential Euler difference. Second, the existence of unique global bounded solution and equilibrium point, exponential stability and synchronization of the derived difference model are investigated. Compared with the classical fractional-order Euler difference method, the Mittag-Leffler discrete shunting inhibitory cellular neural networks can better describe and maintain the dynamic properties of the corresponding continuous-time models. More importantly, it opens up a new way to study discrete-time fractional-order systems and establishes a set of theory and methods to study Mittag-Leffler discrete neural networks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3