Adaptive obstacle avoidance control strategy for a formation under a narrow alleyway environment

Author:

Gu Yao1,Yue Ming12ORCID,Shangguan Jinyong1,Su Longfei1

Affiliation:

1. School of Automotive Engineering, Dalian University of Technology, Dalian, China

2. Ningbo Institute, Dalian University of Technology, Ningbo, China

Abstract

This article develops an effective adaptive obstacle avoidance control strategy containing formation decision mechanism and a model predictive control–based formation controller for a multi-robot system working in a narrow alleyway environment. First, a decision mechanism containing two obstacle avoidance methods, homogeneous deformation and heterogeneous deformation, is established to provide a flexible choice for the formation to pass through the obstacle area, taking into account the formation safety and environment constraint. Furthermore, a formation bank is preset, and a performance evaluation system containing structural deformation, convergence speed, and energy consumption is established to help determine the best obstacle avoidance configuration. Then, a model predictive control–based formation controller with the leader–follower approach is utilized to realize the configuration switching and keeping. In the end, the simulation results verify the effectiveness of the proposed control strategy.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China-Shenzhen Robotics Research Center Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fixed-time sliding mode estimator-based distributed formation control for multiple nonholonomic mobile robots;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3