A novel model reduction approach for linear time-invariant systems via enhanced PSO-DV algorithm and improved MPPA method

Author:

Vasu G1,Sivakumar M2ORCID,Ramalingaraju M3

Affiliation:

1. Department of EEE, SVP Engineering College, Visakhapatnam, India

2. Department of EEE, Gudlavalleru Engineering College, Vijayawada, India

3. Department of EEE, UCEK, JNTUK, Kakinada, India

Abstract

In this article, the combination of stochastic search and conventional approaches are used to develop an optimal frequency-domain model order reduction method for determining the stable and accurate reduced-order model for the stable large-scale linear time-invariant systems. The method uses the enhanced particle swarm optimization with differentially perturbed velocity algorithm to determine the denominator polynomial coefficients of the reduced-order model, whereas the numerator polynomial coefficients of the reduced-order model are determined by using an improved multi-point Padé approximation method. The method generates an optimum reduced-order model by minimizing an objective function [Formula: see text], which is formulated using two functions. The first function, [Formula: see text], evaluates the measure of integral squared error between the step responses of the original system and the reduced-order model. And the second function evaluates the measure of retention of full impulse response energy of the original system in the reduced-order model. Therefore, by minimizing the objective function ‘ E’, the proposed method is guaranteed for preserving passivity, stability and the accuracy of the original higher order system in the reduced-order model. The proposed method is extended to the linear time-invariant multi-input multi-output system. In this case, an optimal reduced-order model is determined by minimizing a single objective function [Formula: see text], which is formulated by linear scalarizing of all the objective function [Formula: see text] components. The method is popular for preserving stability, passivity and accuracy of the original system in the reduced-order model. The validation of the method is shown by applying to a sixth-order single-input single-output hydropower system model as well as to the seventh-order two-area multi-input multi-output power system model. The comparison of the simulation results of integral squared error and impulse response energy values of the reduced-order models demonstrates the dominance of the proposed method than the existing reduction methods available in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3