Implementation a fractional-order adaptive model-based PID-type sliding mode speed control for wheeled mobile robot

Author:

Ayten Kağan Koray1ORCID,Çiplak Muhammet Hüseyin1,Dumlu Ahmet1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Erzurum, Turkey

Abstract

This article presents the speed and direction angle control of a wheeled mobile robot based on a fractional-order adaptive model-based PID-type sliding mode control technique. Taking into account the individual benefits of the fractional calculus and the adaptive model-based PID-type sliding mode control method, the fractional order and the adaptive model-based PID-type sliding mode control technique are combined and proposed as an effective controller for the first time in the literature for real-time control of the wheeled mobile robot under the external payload. In this proposed method, several critical issues are considered; first, a kinematic and dynamic model of the wheeled mobile robot is analysed considering the system’s uncertainties. Second, fractional-order calculus and the model-based PID-type sliding mode control is composed to realize the chattering-free control, accurate trajectory tracking response, finite time convergence and robustness for the wheeled mobile robot. Finally, an adaptive process is also employed to meet and overcome the unknown dynamics and uncertain parameters of the system, regardless of the previous information of the uncertainties. The experimental outcomes demonstrate that the proposed controller (fractional-order adaptive model-based PID-type sliding mode controller) delivers an accurate trajectory tracking performance, faster finite-time convergence as well as having a smaller speed error under the external payload when the adaptive model-based PID-type sliding mode control is compared.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3