Data-driven estimation of the inertia moment of wind turbines: A new ice-detection algorithm

Author:

Stotsky Alexander1,Egardt Bo1

Affiliation:

1. Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

Abstract

Turbine blades accumulate ice under certain atmospheric conditions, such as low temperature and high humidity. This implies additional loads that might damage the turbine. A reliable ice-detection algorithm is required to shut down the turbine and prevent damages. A simple sensorless technique is proposed in this article for detection of both icing and ice shedding events. The technique is based on the estimation of the turbine inertia moment using generator speed measurements, turbine model and robust and fast convergent data-driven algorithms. Estimated inertia moment can be used for both ice detection and adaptation of the parameters of the control system. Implementation of this technique allows a stable turbine operation during hazardous ice conditions via adjustment of the control system parameters or turbine shut down in the extreme icing conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3