Practical finite time vibration suppression of mechatronic systems using proportional–integral–derivative variable structure controls with dead-band nonlinearity

Author:

Aghababa Mohammad Pourmahmood12ORCID,Saif Mehrdad1

Affiliation:

1. Electrical and Computer Engineering Department, University of Windsor, Windsor, ON, Canada

2. Electrical Engineering Department, Urmia University of Technology, Urmia, Iran

Abstract

Vibration is an intrinsic phenomenon in many mechanical and mechatronic applied devices and undesirable vibration can either degrade the performance of the system or lead to unpredictable outputs. The main purpose of this article is to introduce a novel second-order proportional–integral–derivative sliding mode control methodology to suppress the undesirable vibrations of a class of applied dynamical systems with applications to mechatronic and mechanical devices. After designing a nonlinear proportional–integral–derivative terminal sliding manifold, rigorous mathematics are provided to guarantee that the origin is a practical finite time stable equilibrium point. Consequently, two efficient control laws are proposed to ensure the occurrence of the sliding motion with and/or without system unknown parameters. Motivated by situations encountered in practice, unknown lumped uncertainties are also added to the system and their impacts are tackled using adaptive control techniques. Furthermore, a hard nonlinear dead-band function is utilized in the control input and its effects such as lags and delays appeared on the control signals as well as on the system outputs are dealt with by the proposed proportional–integral–derivative variable structure controller. The proposed second-order variable structure controller not only utilizes the simple effective design approach of the proportional–integral–derivative controllers to ensure a reasonable transient performance, but also displays fast convergence properties demonstrated in non-singular terminal sliding modes. Finally, through simulation studies, it is confirmed that the proposed control strategy is effective in vibration attenuation of microelectromechanical resonators.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3