A novel real-time non-linear wavelet-based model predictive controller for a coupled tank system

Author:

Owa Kayode12,Sharma Sanjay12,Sutton Robert12

Affiliation:

1. School of Marine Science and Engineering, Plymouth University, Plymouth, UK

2. Marine and Industrial Dynamic Analysis Research (MIDAS) Group, Plymouth, UK

Abstract

This article presents the design, simulation and real-time implementation of a constrained non-linear model predictive controller for a coupled tank system. A novel wavelet-based function neural network model and a genetic algorithm online non-linear real-time optimisation approach were used in the non-linear model predictive controller strategy. A coupled tank system, which resembles operations in many chemical processes, is complex and has inherent non-linearity, and hence, controlling such system is a challenging task. Particularly important is low-level control where often instability and oscillatory responses are observed. This article designs a wavelet neural network with high predicting precision and time–frequency localisation characteristics for an online prediction model in the non-linear model predictive controller to show the effectiveness of this approach in controlling the liquid at low level. To speed up the training process, a fast global search stochastic non-linear conjugate wavelet gradient algorithm is initially used to train the wavelet neural network structure before the genetic algorithm optimisation technique is utilised to tune adaptively the wavelet neural network parameters. The non-linear model predictive controller algorithm is tested for both approaches: first, in a simulation using identified models, and second, in a real-time practical application to a single-input single-output system coupled tank system. The results show an excellent control performance with respect to mean square error and average control energy values obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3