Intelligent explicit model predictive control based on machine learning for microbial desalination cells

Author:

Wang Jing1ORCID,Wang Qilun1

Affiliation:

1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China

Abstract

Aiming at the online control problem of microbial fuel cells, this article presents a class of explicit model-predictive control methods based on the machine learning data model. The proposed method is divided into two stages: off-line design and on-line control. In the off-line design stage, (1) a feasible data set is collected by sampling the admissible state in the feasible region and solving the optimal model predictive control law for each sampling data point off-line, (2) a feasible sample discriminator is constructed based on the support vector machine–based binary classification in order to judge the whether the real sampling state is feasible, and (3) according to the feasible samples and the corresponding optimal control law, the control surface of explicit model predictive controller is constructed based on the machine learning methods. In the on-line control stage, the process data are collected in real time and the feasible control output is calculated by using the trained explicit predictive control surface. Extensive testing and comparison among the different machine learning algorithms, such as artificial neural network, extreme learning machine, Gaussian process regression, and relevance vector machine, are performed on the benchmark model of a class of microbial desalination fuel cells. These results demonstrate that the proposed explicit model predictive control method can avoid the exhausting optimization computing and is easy to realize on-line with good control performance.

Funder

the open-project grant funded by the State Key Laboratory of Synthetical Automation for Process Industry at the Northeastern University

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3