Towards accurate estimation of fast varying frequency in future electricity networks: The transition from model-free methods to model-based approach

Author:

Stotsky Alexander1

Affiliation:

1. Division of Electric Power Engineering, Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden

Abstract

Accurate estimation of fast varying fundamental frequency in the presence of harmonics and noise will be required for effective frequency regulation in future electricity networks with high penetration level of renewable energy sources. Two new algorithms for network frequency tracking are proposed. The first algorithm represents a robust modification of classical zero crossing method, which is widely used in industry. The second algorithm is a multiple model algorithm based on the systems with harmonic regressor. Algorithm allows complete reconstruction of the frequency content of the signal, using information about the upper bound of the number of harmonics only. Moreover, new family of high-order algorithms together with new stepwise splitting method are proposed for parameter calculation in systems with harmonic regressor for the accuracy improvement. Statistical methods are introduced for comparison of two new algorithms to classical zero crossing algorithm. The modified algorithm provides significant improvement compared to the classical algorithm, and the algorithm with harmonic regressor provides further improvement of the statistical performance indexes with respect to the modified algorithm.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3