A fast transient tracking differentiator for high-precision motion systems

Author:

Wang Huan1,Su Yuxin1ORCID

Affiliation:

1. School of Electro-Mechanical Engineering, Xidian University, Xi’an, China

Abstract

High-quality velocity signal plays an important role in fast and precise motion systems, but most commercially available motion systems are not commonly equipped with velocity sensors; hence, full access to the system states is impossible. A fast transient tracking differentiator is proposed in this article for obtaining the noise-less time derivative from a noisy measurement. The fast transient tracking differentiator is conceived within the framework of tracking differentiator methodology and is accomplished by integrating a power-like function with a smooth hyperbolic sine function. Tracking differentiator theory and Lyapunov direct method are employed to show the global asymptotic convergence. Advantages of the proposed fast transient tracking differentiator include the easy implementation with intuitive structure and high computational efficiency and faster transient and higher noise attenuation for both small and large initial estimation errors. The proposed fast transient tracking differentiator can be applied to a large class of motion systems by cascading to a robust output feedback proportional–derivative control for fast and high-precision positioning with position measurement only. Numerical simulation and real-time experimental comparisons demonstrate that the proposed approach provides an easygoing model-free output feedback solution for fast and accurate velocity reconstruction and high-performance positioning of uncertain motion systems with position measurement only.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Composite High-Speed and High-Precision Positioning Approach for Dual-Drive Gantry Stage;IEEE Transactions on Automation Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3