Optimal number and allocation of data collection points for linear spline growth curve modeling

Author:

Wu Wei1,Jia Fan1,Kinai Richard1,Little Todd D.2

Affiliation:

1. University of Kansas, Lawrence, KS, USA

2. Texas Tech University, Lubbock, TX, USA

Abstract

Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency of detecting key parameters in the spline models, holding the total number of data points or sample size constant. We identify efficient designs for the cases where (a) the exact location of the change point is known (complete certainty), (b) only the interval that contains the change point is known (partial certainty), and (c) no prior knowledge on the location of the change point is available (zero certainty). We conclude with recommendations for optimal number and allocation of data collection points.

Publisher

SAGE Publications

Subject

Developmental and Educational Psychology,Life-span and Life-course Studies,Developmental Neuroscience,Social Psychology,Social Sciences (miscellaneous),Education

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3