Diesel air path control using pressure difference: Pumping loss and aging considerations

Author:

Salehi Rasoul1ORCID,Stefanopoulou Anna1,Vernham Bruce2

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

2. ISUZU Technical Center of America, Plymouth, MI, USA

Abstract

Pressure difference across the exhaust and intake manifolds ([Formula: see text] P) is a crucial variable to control the pumping loss and cylinder charge dilution through the exhaust gas recirculation in a diesel engine. This paper presents a novel architecture for controlling [Formula: see text] P and the engine-out NO x emissions, which increases the controller tolerance to engine components aging. The architecture has an internal control loop, designed as a two-input two-output controller, to coordinate the exhaust gas recirculation and variable geometry turbine valves. Using feedback from [Formula: see text] P and the estimated cylinder oxygen ratio [Formula: see text] cyl, the two-input two-output controller regulates the pumping loss and the engine NO x emissions. To reduce high turbo lag and its associated slow air–fuel ratio ([Formula: see text]) response, which are inherent features of a [Formula: see text] P-based control strategy, the two-input two-output linear quadratic controller is tuned such that [Formula: see text] is also regulated, but only during fast transients. An external loop is supplementing the core two-input two-output controller correcting the internal loop set points to reduce the effects of [Formula: see text] cyl estimation errors on NO x control and ensure [Formula: see text] stays above a minimum value, [Formula: see text] min, critical for smoke emissions. As a feature of the proposed control system, direct feedback from [Formula: see text] P increases pumping loss robustness to common degradation in diesel engines, namely, turbine efficiency and diesel particulate filter blockage due to ash deposit, compared to a conventional boost pressure–based controller. Also, it is shown that the input–output coupling structure of the proposed two-input two-output controller and use of the NO x feedback mitigate effects of exhaust gas recirculation fouling and associated exhaust gas recirculation valve saturation on increase in NO x emission.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3