Optimization and realization on the coordination control strategy for auxiliary power unit of range-extended electric vehicle

Author:

Liu Hanwu1ORCID,Lei Yulong1,Fu Yao1,Li Xingzhong1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, School of Automotive Engineering, Jilin University, Changchun, China

Abstract

The auxiliary power unit (APU) is a major power source of range-extended electric vehicle (R-EEV). Excellent coordination control strategy of APU has a great significance impact on improving the overall electrical control system performance of R-EEV. A coordination control strategy based on parameters adapt fuzzy-PID is proposed to ensure the dynamic and static response characteristics of the coordination control system. Firstly, the APU high precision simulation control model is built in GT-Power and Matlab-Simulink. Three coordination control strategies based on traditional PID control method are designed, namely, engine speed control model (ESCM), generator torque control model (GTCM), and APU speed-torque control model (AS-TCM). The three coordination control strategies are simulated on working conditions, which include start-up working condition, power raised working condition, and power reduced working condition. Combined with the PID control principle, the control performance and inherent limitations of three traditional PID control strategies (TPCS) are analyzed and compared. Then, according to the above simulation results of analysis and comparation, the parameters adapt fuzzy-PID control strategy (PAF-PCS) is designed and simulated. The results show that three control parameters ( kp, ki, kd) are changed in real time to ensure the flexibility and adaptability of the control system and improve the stability and robustness of control system. Finally, the results of bench test show that power responds quickly and no oscillation and fixed-point power generation works smoothly, which are basically consistent with the simulation results. Therefore, the PAF-PCS proposed in this paper has good feasibility and effectiveness.

Funder

the Science and Technology Planning Project of Jilin Province

national key research and development program of china

Science and Technology Project of Qingdao

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3