Mechanism research and structure optimization of brake noise based on contact overlap degree

Author:

Pan Gongyu1,Luo Xu1ORCID

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, China

Abstract

Brake noise can endanger the psychological and physiological health of passengers, as well as cause noise pollution. Therefore, it is important to suppress the noise from the design stage of the braking system. Based on the establishment of a complex modal finite element model of the brake and verification of the validity of the model through bench test, the mechanism of “contact overlap degree” is proposed, that is, the influence of the brake disc-block friction contact overlap degree on the brake noise. In order to better simulate the real situation during brake friction contact, a face-spring distributed contact model of the brake is developed and the key influencing factors of contact overlap degree are selected. Based on the asymmetry and unevenness of contact overlap degree distribution, the structural optimization schemes of brake backplane and friction lining are proposed respectively, and the complex modal analysis is re-performed. The analysis results show that the noise incidence is reduced after structural optimization, which verifies the effectiveness of the above two structural optimization schemes in reducing brake noise.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference25 articles.

1. Acoustics of friction

2. Automotive disc brake squeal

3. Lamarque PV, Williams C. Brake squeak: the experiences of manufacturers and operators and some preliminary experiments. Institution of Automobile Engineers, 1938.

4. A Theory of Brake Squeal

5. Mills HR. Brake squeal. Institution of Automobile Engineers, Report, 1938.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3