Predictive method of pressure loss in wet clutch caused by seal wear based on stacking ensemble learning

Author:

Gong Ran1ORCID,Sun Fengming1,Wang Cheng2,Zhang He2

Affiliation:

1. Department of Automotive Engineering, Jiangsu University, Zhenjiang, China

2. China North Vehicle Research Institute, Beijing, China

Abstract

The harsh operating conditions of heavy-duty vehicles accelerates the wear of the sealing ring in the transmission, leading to increased oil leakage and a reduction of the operating pressure in the piston cylinder of wet clutch. This impairs the proper functioning of the transmission in the heavy-duty vehicle. Therefore, it is necessary to predict the pressure loss inside the transmission quickly and effectively after the wear of the sealing ring. The wear of the sealing ring under different operating conditions is calculated through the modified Archard model. The relationship between the oil leakage and pressure loss after the wear of the sealing ring is analyzed using Fluent software. The analysis involves the effects of different wear levels of the sealing ring. The simulation results are validated through a high-speed oil cylinder performance test rig. Based on the validated simulation data and test data, a prediction model for pressure loss is established by using stacking ensemble learning with MLR (multiple linear regression), DTR (decision tree regression), and SVR (support vector regression) as the base learners and RF (random forest) as the meta-learner. The risk of model overfitting is reduced through k-fold cross-validation. The research results indicate that the fused stacking ensemble learning algorithm fully utilizes the advantages of each base learner and can effectively predict the pressure loss after the wear of the sealing ring, and achieve a higher accuracy. The establishment of this model provides theoretical support for real-time prediction of pressure loss after the wear of the sealing ring in actual heavy-duty vehicles.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3