A predictive energy management strategy for plug-in hybrid electric vehicles using real-time traffic based reference SOC planning

Author:

Wang Rong1ORCID,Shi Xianrang1,Su Yang1,Song Tinglun2

Affiliation:

1. Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Chery Automobile CO., Ltd, Wuhu, China

Abstract

The fuel economy of plug-in hybrid electric vehicles (PHEVs) is strongly affected by the battery state of charge (SOC) depletion pattern. This paper proposes and studies a real-time traffic-based SOC reference planning method. The method uses a dataset to collect and capture real traffic information and then enriches the dataset using a data augmentation method developed in this paper. The augmented dataset is optimized by dynamic programing (DP) algorithm to obtain the optimal reference SOC for model training. The traffic information and optimal reference SOC are processed and used to train a long-short term memory (LSTM) neural network, which is used for online reference SOC planning. Finally, a predictive energy management (PEM) strategy is adopted to follow the SOC reference by optimizing instantaneous power allocation with the predicted velocities. Simulation results show that the proposed method outperforms the linear reference SOC planning method in both smooth and congested traffic scenarios.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3