Modeling and dynamic analysis of a 6 x 6 heavy military truck by adaptive model predictive control with application to NATO lane change test course

Author:

Acuña Marcelo Andrés12,Simão Rodrigues Gustavo1ORCID,Queiroz Rafael Vitor Guerra1,Lopes Elias Dias Rossi1ORCID

Affiliation:

1. Instituto Militar de Engenharia, Rio de Janeiro, Brazil

2. Facultad de Ingeniería del Ejército, Buenos Aires, Argentina

Abstract

In this paper, the computer-aided vehicle dynamic analysis of a 6x6 heavy military truck is presented and examined. For the analysis, a MATLAB/Simulink® platform is used to design and model a truck. The vehicle configuration taken into account for the analysis is the powertrain (engine, gear box, transfer gear, differential), suspension, steering system and tire model according to the Pacekja 89’ formulation. In addition, the effect of the rolling resistance and drag is considered, in order to represent the vehicle behavior as real as possible. The longitudinal dynamic and lateral dynamic are formulated. First, the longitudinal dynamic model is established by means of implementation of the weight transfer function. The vehicles are considered as rigid bodies with 1 degree of freedom. Second, the vehicular planar model with three wheels, well known as bicycle model, is applied following the North Atlantic Treaty Organization double line change maneuver test reaching 3 degree of freedom. The driver behavior is represented by using an adaptive model predictive control varying the longitudinal velocity. The forces for braking, inertia of the rotating components, the energy lost in the powertrain, and the effect of dive squat and rollover. The numerical simulation results are shown and compared with a full-vehicle model formed by using Mechanical Simulation Corporation’s truckSIM®. There were chosen simulation scenarios applied to the model to observe the effects of different parameters concerning the dynamic behavior, and also prepared in truckSIM® environment. The main contributions of this article are the development of the vehicular model, through the use of block diagrams in a reliable and relatively simple programming code such as MATLAB/Simulink®, with innovative tools used in the control of autonomous vehicle driving and the flexibility to adapt said model to different environmental conditions and different vehicle parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3