Design and verification of automatic navigation control system for large high clearance self-propelled sprayer

Author:

Li Wei1ORCID,Shao Mingxi2,Du Yuefeng3ORCID,Li Zhixiang1,Sun Zhijuan1,Yang Fan3

Affiliation:

1. School of Engineering, The Open University of China, Beijing, China

2. College of Mechanical Engineering, Qinghai University, Xining, China

3. Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, College of Engineering, China Agricultural University, Beijing, China

Abstract

An automatic navigation system aiming at improving the accuracy and efficiency of a large high clearance self-propelled sprayer was developed. First, a navigation hydraulic steering system was designed according to the structural characteristics and operation requirements of the sprayer, and a mathematical model of the system was established to describe the working characteristics of the navigation system. The system includes a navigation control strategy, a pure pursuit path tracking algorithm, and a fuzzy adaptive proportional-integral-derivative control method. To verify the performance of the system, a simulation model was developed using MATLAB/Simulink, and the performance of the control methods were compared. Additionally, an actual vehicle test platform was built based on 3WPG-3000 high clearance self-propelled sprayer independently developed by the research group. The simulation results revealed that under the two-wheel steering mode, the lateral position deviation of the vehicle decreases to 0 m in 11 s, and the heading angle deviation decreases to 0 rad in about 11 s; while under four-wheel steering mode, the lateral position deviation of the vehicle decreases to 0 m in 8 s, and the heading angle deviation decreases to 0 rad in 8 s. The field test results revealed that at the speed of 3 km/h, the sprayer tracked the target path in 5.84 s under the two-wheel steering mode and reached stability, and tracked the target path in 4.08 s under the four-wheel steering mode and reached stability; while at the speed of 5 km/h, the spray tracked the target path in 3.75 s under the four-wheel steering mode and reached stability. Altogether, the results of the simulation and field test verify the stability, accuracy, and practicability of the system.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3