Efficiency of disengaged wet brake packs

Author:

Leighton M1,Morris Nicholas1ORCID,Trimmer Gareth2,King Paul D1,Rahnejat Homer1

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

2. J.C. Bamford Excavators, Rocester, UK

Abstract

Key objectives in off-highway vehicular powertrain development are fuel efficiency and environmental protection. As a result, palliative measures are made to reduce parasitic frictional losses while sustaining machine operational performance and reliability. A potential key contributor to the overall power loss is the rotation of disengaged wet multi-plate pack brake friction. Despite the numerous advantages of wet brake pack design, during high-speed manoeuvre in highway travel or at start-up conditions, significant frictional power losses occur. The addition of recessed grooves on the brake friction lining is used to dissipate heat during engagement. These complicate the prediction of performance of the system, particularly when disengaged. To characterise the losses produced by these components, a combined numerical and experimental approach is required. This paper presents a Reynolds-based numerical model including the effect of fluid inertia and squeeze film transience for prediction of performance of wet brake systems. Model predictions are compared with very detailed combined Navier–Stokes and Rayleigh-Plesset fluid dynamics analysis to ascertain its degree of conformity to representative physical operating conditions, as well the use of a developed experimental rig. The combined numerical and experimental approach is used to predict significant losses produced during various operating conditions. It is shown that cavitation becomes significant at low temperatures due to micro-hydrodynamic action, enhanced by high fluid viscosity. The magnitude of the losses for these components under various operating conditions is presented. The combined numerical-experimental study of wet multi-plate brakes of off-highway vehicles with cavitation flow dynamics has not hitherto been reported in the literature.

Funder

Innovate UK

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3