The effect of rear cavity modifications on the drag and flow field topology of a Square Back Ahmed Body

Author:

Koppa Shivanna Naveen1ORCID,Ranjan Pritanshu1,Clement Shibu1

Affiliation:

1. Department of Mechanical Engineering, BITS Pilani, K K Birla Goa Campus, Zuarinagar, India

Abstract

This work presents a numerical investigation of turbulent flow over a simplified vehicle model called the Square Back Ahmed Body (SBAB). The simulations are performed at Reynolds number 1 × 105 using the k − [Formula: see text] SSTSAS turbulence model. The numerical results for the standard reference model, that is, SBAB, have been validated against available experimental data and numerical simulations. The performance of a passive flow controller with four variants on the mean wake topology and the resultant drag reduction is evaluated. The four variants are; (i) straight cavity, (ii) straight cavity with rounded edges, (iii) C-shaped cavity, and (iv) tapered cavity. For a straight cavity with a depth equal to 33.33% of the body height, drag is lowered by 5.63%. With the same cavity depth, rounding the straight cavity edges reduces the drag by 10.67% owing to the streamlining and shortening of the recirculation region. For a C-shaped cavity, the amount of drag reduction increased slightly by 1% more than that off straight cavity with rounded edges, due to improvement in the base pressure distribution compared to that of the latter case. Tapering the cavity edges at an angle of 6° gave a significant drag reduction of 22.55% primarily due to a tremendous decrease in wake size. The drag reduction achieved in all the cases results from the modification in the mean wake topology induced by afterbody shape remodeling. The power spectra of the evolution of the lift coefficient over time reveal a noticeable decrement in the flow randomness with the inclusion of a cavity and its modifications, which interprets the mitigation of the chaotic nature in the wake. The cavity presence has also increased the vorticity spreading rate in the mixing layer and produced significant attenuation of Turbulent Kinetic Energy (TKE).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric optimization for van drag reduction using a side flap;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-03-30

2. Investigation of wheelhouse shapes on the aerodynamic characteristics of a generic car model;Advances in Mechanical Engineering;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3