The tire slip angle estimation algorithm based on intelligent tire technology

Author:

Li Bo12,Gu Tianli1ORCID,Quan Zhenqiang1ORCID,Bei Shaoyi1,Zhou Dan1,Zhou XinYe1,Han Xiao2

Affiliation:

1. School of Automotive and Transportation Engineering, Jiangsu University of Technology, Changzhou, China

2. Suzhou Automotive Research Institute, Tsinghua University, Suzhou, China

Abstract

Tire slip angle is a very important parameter in tire/vehicle dynamics control. This paper proposes a tire slip angle estimation method that combines intelligent tire technology and machine learning. Firstly, a finite element model of a 205/55/R16 radial tire was established by ABAQUS software, and the tire finite element model is verified by the radial stiffness experiment and dynamics experiment. Secondly, the curves of lateral acceleration and the curves of the lateral displacement obtained by five virtual tri-axial accelerometers installed on the inner line of the finite element tire under different slip angles, tire pressures, loads, and speeds were analyzed. Finally, combined with linear correlation analysis method, the promising input eigenvalues were determined, and three slip angle prediction models were trained based on the same set of train sets to predict the same set of test sets. The prediction results showed that the slip angle prediction curve of BP model has the highest degree of coincidence with the actual curve, and the mean absolute percentage error is 3.55%, indicating that the slip angle estimation algorithm proposed in this paper is feasible, which is very important for the stability control of the vehicle.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education of China

Changzhou International Science and Technology Cooperation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new lateral force estimator for intelligent tires based on three-dimensional ring model;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3