Energy and exergy analysis of hydraulic free-piston engines

Author:

Wang Lei1ORCID,Zhao Zhenfeng1,Yu Chuncun1,Zhang Fujun1,Zhao Changlu1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China

Abstract

A hydraulic free-piston engine is an unconventional reciprocating piston internal combustion engine in which the piston assembly motion is determined by in-cylinder gas pressure and load force. Fuel combustion energy is directly converted into hydraulic energy. These affect the work process of cylinder and efficiency of energy conversion. In order to study the energy utilization efficiency and to explore the recovery potential of waste heat energy of hydraulic free-piston engine, in this paper, the energy distribution and waste heat energy characteristics of hydraulic free-piston engine have been studied by combining energy and exergy analysis. The thermal efficiency was analyzed by the first law of thermodynamics, and exergy balance was analyzed by the second law. The effect of the characteristic parameters on the thermal and exergy efficiency was studied through the simulation analysis comparing the energy utilization of hydraulic free-piston engine and conventional engines. The results show that control of the injection timing parameter is effective for optimizing efficiency because the cycle characteristic parameters can be controlled by changing the injection timing. The experimental results show that the thermal efficiency is 40.8% and the exergy efficiency is 46.3%. The simulation result show that the thermal efficiency of hydraulic free-piston engine is 38.0% and the conventional diesel engine is 33.0%.

Funder

Doctoral Program of Higher Education of China

Returned Overseas Chinese Scholars, State Education Ministry, and the BIT Foundation for Fundamental Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A theoretical framework for the analysis of an opposed piston linear engine design;Results in Engineering;2024-06

2. Optimal power distribution control in modular power architecture using hydraulic free piston engines;Applied Energy;2024-03

3. The effects of design parameters on the dynamic performance, in-cylinder pressure and electrical power generation of a free piston linear engine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-05

4. Leveling Strategy of Active Hydraulic Suspension System Based on GA-PID Controllers;2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA);2022-10-28

5. The effect of electromagnetic load fluctuation on the gas exchange stability of a free-piston hybrid power system;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3