Modelling the longitudinal braking dynamics for heavy-duty vehicles

Author:

Güleryüz İbrahim Can1ORCID,Başer Özgün2ORCID

Affiliation:

1. Department of Product Design and Development, Ege Fren Inc., Izmir, Turkey

2. Department of Mechatronics Engineering, Izmir Katip Celebi University, Izmir, Turkey

Abstract

This paper establishes a reliable heavy-duty braking system model that can be used for response time prediction and for vehicle braking calculations regarding the legislative requirements. For the response time prediction, a pneumatic system model of a heavy-duty vehicle is constructed by Matlab Simulink in consideration of service brake layout. To ensure the accuracy of system parameters related with pneumatic system response time experiments are conducted on two different 4 × 4 heavy-duty vehicles. The numerically calculated response time results are validated with experimental data. To improve the response time of the vehicle, design modifications are conducted on the pneumatic brake system properties. To check the compliance of the pneumatic brake system design with legislative requirements of UN Regulation 13, heavy-duty vehicle brake system (HVBS) model is developed by using Matlab Simulink. HVBS model is composed of longitudinal vehicle and wheel dynamics, Magic Formula tyre model, wheel slip and the experimentally verified heavy-duty pneumatic system model. The braking performance analyses are conducted by using HVBS model to compare the design alternatives in accordance with the legal requirements in terms of service braking and secondary braking conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3