Transmission of fore-and-aft vibration to the seat pan, the backrest and the headrest of a car seat

Author:

Zhang Xiaolu12,Qiu Yi1,Griffin Michael J.1

Affiliation:

1. Human Factors Research Unit, Institute of Sound and Vibration Research, University of Southampton, Southampton, Hampshire, UK

2. Current: College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, People’s Republic of China

Abstract

Measurements of the transmission of vibration from the floor beneath a seat to interfaces between the seat and the human body are used to characterise the dynamic performance of the seat. Most studies of seat transmissibility concern the transmission of vertical vibration through seat pan cushions, but fore-and-aft vibration at a seat pan and backrest can also cause discomfort. This study investigated the transmission of fore-and-aft vibration through a car seat to surfaces on the seat pan cushion, the backrest cushion and the headrest, and also to the seat frame at these three locations. The study sought to understand the influences of the seat frame and the cushion foam and to provide data for dynamic modelling of the seat. The fore-and-aft transmissibility of the seat was measured with 12 human subjects and an SAE J826 manikin, using 120-s periods of fore-and-aft random vibration (0.25-40 Hz) at three magnitudes (0.4 m/s2 r.m.s., 0.8 m/s2 r.m.s. and 1.2 m/s2 r.m.s.). With the manikin, there were three resonances (at 3.5 Hz, 12 Hz and 20 Hz) in the transmissibilities from the seat base to the seat pan frame and the seat pan cushion, and to the backrest frame and the backrest cushion. With the human subjects, the transmissibilities from the seat base to all six locations on the seat showed a principal resonance around 4 Hz. With increasing magnitude of the vibration, the principal resonance frequency in all the seat transmissibilities decreased. It is concluded that fore-and-aft resonances in the seat transmissibilities, especially to the backrest, are likely to affect vibration discomfort. There are large differences between the fore-and-aft transmissibility of a seat with a manikin and those with human subjects, consistent with the human body having dynamics very different from those of a rigid mass. Non-linearities in the seat transmissibilities with the manikin and with the human subjects may be explained by non-linearity in the biodynamics of the body and the responses of the seat and the manikin.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3