Research on active safety control for heavy multi-axle vehicles under steering system failure

Author:

Liu Qihui12ORCID,Du Heng12ORCID,Yu Yajin12,Huang Hui12,Wang Yunchao3,Fang Jinhui4ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control, Fuzhou University, Fuzhou, China

3. College of Mechanical and Energy Engineering, Jimei University, Xiamen, China

4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China

Abstract

Heavy multi-axle vehicles with long bodies, large loads, and many steering axles are prone to one stuck axle with its steering system failed, which leads to a sharp drop in vehicle safety. Modulating the steering angles of the remaining non-faulty axles for compensation control can significantly improve the safety of the vehicle. Therefore, this paper proposes a method based on multi-axle steering compensation, which solves the large trajectory error, and instability of heavy multi-axle vehicles caused by the failure of one-axle steering system. Firstly, based on the Lyapunov method, and nonlinear model, the critical steering angle of the faulty axle leading to vehicle instability under the failure of one-axle steering system is clarified, which provides a quantitative index for vehicle stability evaluation. Then, a two-level controller is designed to maintain stability and reduce trajectory error of the faulty vehicle. The upper dual-input dual-output (DIDO) sliding mode controller (SMC) compensates for the faulty vehicle’s lateral force and yaw moment. And the lower controller distributes the non-faulty axles’ steering angles through a strategy considering tire workload and slip energy dissipation. Finally, a seven-axle vehicle model in the Trucksim and a Trucksim-Simulink co-simulation are used to verify the effectiveness of the proposed method. The results illustrate that the proposed method can maintain vehicle stability and reduce the lateral trajectory error by about 22%–91% in the failure of one-axle steering system. It proves that this method can provide a new scheme for active safety control of heavy multi-axle vehicles.

Funder

Project of the Fujian College Industry-Academia Cooperation under Grant

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3