Trajectory tracking control of four-wheel steering automatic guided vehicle under the working condition of moving centroid

Author:

Liu Wei12,Wan Yidong1ORCID,Zhang Qingjie1,Yu Yue1ORCID,Liu Ping1,Shi Ziao1

Affiliation:

1. School of Automotive Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China

2. Jiangsu Coastal Institute of New Energy Vehicle, Yancheng, Jiangsu, China

Abstract

The centroid of the whole vehicle moves when the automatic guided vehicle (AGV) loads and unloads goods between stations in the intelligent factory, which reduces the trajectory tracking accuracy. To this end, the dynamics and kinematics models of a four-wheel steering AGV were established, and the Lyapunov direct method was used to construct a trajectory tracking controller with global asymptotic stability in this study. Based on the adaptive learning factor and inertia weight, an adaptive particle swarm optimization algorithm was designed to optimize the control parameters of the controller, and an adaptive global asymptotic tracking control (AGATC) controller was proposed. Under simulated working condition of moving centroid, the AGATC controller was compared with adaptive model predictive control (AMPC) controller, and the trajectory tracking simulation was carried out. The results show that the position deviation of the AGATC controller was 23.97% lower than that of the AMPC controller, and the trajectory tracking control accuracy is higher under the condition of moving centroid. Moreover, a prototype of AGV was developed, and the trajectory tracking control verification experiment was carried out. The results show that the error between simulation and experiment was less than 9.03%, which proves the authenticity and effectiveness of the AGATC controller. This study provides theoretical and experimental basis for intelligent factory to realize precision and intelligent handling technology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory planning for AGV based on the improved artificial potential field- A* algorithm;Measurement Science and Technology;2024-06-20

2. Gradient projection-based trajectory tracking control for automatic guided vehicle;Journal of Control and Decision;2024-05-13

3. Trajectory Tracking Nonlinear Hybrid Control of Automated Guided Vehicles;Complexity;2024-05-06

4. Highly Accurate Trajectory Tracking Control for Automatic Guided Vehicle Using Fuzzy PID;2023 20th International Conference on Ubiquitous Robots (UR);2023-06-25

5. Tire-road friction coefficient estimation for automatic guided vehicle under multiple road conditions;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3