Optimization of the transmission characteristics of an HMCVT for a high-powered tractor based on an improved NSGA-II algorithm

Author:

Li Jiang12ORCID,Zhai Zhiqiang12,Song Zhansheng12,Fu Shenghui12,Zhu Zhongxiang12,Mao Enrong12

Affiliation:

1. College of Engineering, China Agricultural University, Beijing, China

2. Beijing Key Laboratory of Optimized Design for Modern Agricultural Equipment, Beijing, China

Abstract

The hydro-mechanical continuously variable transmission (HMCVT) is a critical component of the power transmission system in a tractor. However, the complexity of the operating conditions imposes high requirements on the transmission characteristics. To improve the powerful performance and economy of HMCVTs and satisfy the operational demands of high-powered tractors, a new optimization design method for the characteristic parameters of an HMCVT is proposed. First, the characteristics of an HMCVT are modeled, and the influence of the structural parameters on the transmission characteristics is analyzed. Then, HMCVT performance evaluation indexes are formulated. In accordance with the speed regulation of system, power performance, and economy characteristics, a multi-objective optimization mathematical model is established, and an improved fast non-dominated sorting genetic algorithm (INSGA-II) is designed. The introduction of a normal distribution crossover operator (NDX) and an improved adaptive adjustment mutation operator not only ensures the population diversity but also improves the Pareto solution convergence properties during the process of genetic evolution. The superiority of INSGA-II is verified by comparison with a traditional multi-objective genetic algorithm. Finally, the optimization results show that the torque ratio is increased by approximately 2.81%, 14.32%, 2.31%, and 15.07% in HM1, HM2, HM3, and HM4 respectively. The transmission efficiency is increased by approximately 3.48% and 1.97% in HM1 (HM3) and HM2 (HM4). Also, INSGA-II finds the optimal solution with a faster speed and shorter optimization time than MULGA. This research can serve as a reference for the design and optimization of HMCVTs for high-powered tractors.

Funder

national key research and development program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3