A control strategy for efficient slip ratio regulation of a pneumatic brake system for commercial vehicles

Author:

Kim Jayu1ORCID,Kwon Baeksoon1ORCID,Park Youngnam2,Cho HyunJong2,Yi Kyongsu1ORCID

Affiliation:

1. School of Mechanical Engineering, Seoul National University, Gwanak-gu, Seoul, Korea

2. Advanced Development Team, Sangsin Brake Corporation, Yuga-eup, Dalseong-gun, Daegu, Korea

Abstract

This paper presents a control strategy for efficient slip ratio regulation of a pneumatic brake system for commercial vehicles. A model-based estimator for brake pressure estimation has been developed. The braking torque applied to the wheel has been computed using the estimated brake pressure for the control of the wheel slip both in braking and traction situations. The vehicle velocity and wheel slip ratio estimation algorithms have been designed using only wheel speed sensors. The proposed slip regulation algorithm has also been successfully implemented for the antilock braking system (ABS) and traction control system (TCS). In ABS, the slip ratio and wheel acceleration are stabilized by a limit cycle control of the braking pressure. The TCS has been implemented by combining engine torque control and pneumatic brake pressure control. The brake controller is based on the valve switched control that incorporates the wheel dynamics and valve on/off characteristics. The ABS and TCS algorithms are integrated into the slip regulation algorithm to reduce the computation load of an Electrical Control Unit (ECU). Four-wheel independent slip monitoring and slip ratio control algorithms have been implemented on the ECU, and their performance has been investigated via both computer simulations and vehicle tests. Both results show that the proposed algorithms enhance the acceleration and braking performance without vehicle acceleration information. Moreover, the proposed split-mu strategy has improved the lateral stability during braking, and the acceleration performance during accelerating on the split-mu road. It has been shown via vehicle tests that, compared to the reference commercial algorithm, the braking distance was reduced by more than 4% on the split-mu and low-mu roads, and the acceleration performance was improved by 7.9% on the split-mu road.

Funder

Multifunctional Administrative City Construction Agency

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3