Driver fatigue detection based on convolutional neural network and face alignment for edge computing device

Author:

Li Xiaofeng1ORCID,Xia Jiahao1,Cao Libo1,Zhang Guanjun1,Feng Xiexing1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, People’s Republic of China

Abstract

Most current vision-based fatigue detection methods don’t have high-performance and robust face detector. They detect driver fatigue using single detection feature and cannot achieve real-time efficiency on edge computing devices. Aimed at solving these problems, this paper proposes a driver fatigue detection system based on convolutional neural network that can run in real-time on edge computing devices. The system firstly uses the proposed face detection network LittleFace to locate the face and classify the face into two states: small yaw angle state “normal” and large yaw angle state “distract.” Secondly, the speed-optimized SDM algorithm is conducted only in the face region of the “normal” state to deal with the problem that the face alignment accuracy decreases at large angle profile, and the “distract” state is used to detect driver distraction. Finally, feature parameters EAR, MAR and head pitch angle are calculated from the obtained landmarks and used to detect driver fatigue respectively. Comprehensive experiments are conducted to evaluate the proposed system and the results show its practicality and superiority. Our face detection network LittleFace can achieve 88.53% mAP on AFLW test set at 58 FPS on the edge computing device Nvidia Jetson Nano. Evaluation results on YawDD, 300 W, and DriverEyes show the average detection accuracy of the proposed system can reach 89.55%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence modelling human mental fatigue: A comprehensive survey;Neurocomputing;2024-01

2. Edge Computing And Convolutional Neural Networks For Real-Time Object Detection In Healthcare Iot;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

3. A fatigue driving detection approach based on TPU computing device;Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering;2023-10-20

4. A Multimodel Edge Computing Offloading Framework for Deep-Learning Application Based on Bayesian Optimization;IEEE Internet of Things Journal;2023-10-15

5. DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning;Sensors;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3