Design optimization of an articulated frame steering system

Author:

Yin Yuming1,Rakheja Subhash1,Yang Jue2,Boileau Paul-Emile3

Affiliation:

1. Mechanical and Industrial Engineering, Concordia University, Canada

2. University of Science and Technology Beijing, China

3. Robert-Sauve Research Institute of Occupational Health and Safety, Canada

Abstract

The articulated frame-steered vehicles (AFSV) exhibit enhanced maneuverability but reduced yaw stability and greater steering power consumption. Apart from kinematics of the steering system, the dynamics of the actuating system strongly influence the performance of the AFSV, which is generally neglected in the reported studies. In this study, a yaw-plane model of the articulated vehicle coupled with the kinematic and dynamics properties of the steering struts is formulated to identify objective measures of the AFSV under steering inputs. The results suggest that the vehicle yaw oscillation/stability, steering power efficiency and maneuverability can be objectively measured in terms of the strut length, yaw oscillation frequency and damping ratio, steering gain, and steering response rate and overshoot. The layout of steering struts and properties of the steering valve and hydraulic fluid are optimized while employing the weighted-sum method and a combination of pattern search and sequential quadratic programming algorithms. The relative weights of individual performance measures were obtained using the analytic hierarchy process (AHP) model. The solutions of the optimization problem revealed more compact articulated frame steering (AFS) system design with over 20% reduction in strut length and 24% gain in the yaw oscillation frequency. Increasing the fluid bulk modulus resulted in more compact AFS layout and further increase in the yaw oscillation frequency with lower response overshoot. The optimal design based on weighted sum of various performance measures, however, revealed negligible changes in terms of the steering power efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3