Affiliation:
1. School of Mechanical Engineering, Tianjin University, Tianjin, PR China
Abstract
The computational fluid dynamical software AVL-FIRE code was used for investigating the impact of multiply injection strategies and spray included angles on combustion and emissions in a marine diesel engine. The fuel injection parameters of spray included angle and pilot injection timing with pilot-main injection, as well as post injection ratio and post injection duration angle with pilot-main-post injection, were all investigated and optimized. The results indicate that retarding pilot injection timing with pilot-main injection declines high temperature region, resulting in a notable reduction in NOx emissions. Since fuel evaporation and burn are hampered by long spray penetration due to low temperature and pressure with pilot injection, a suitable spray included angle are used to offer more efficient air-fuel mixing process. A wider spray included angle simultaneously reduces soot emission and indicated specific fuel consumption (ISFC). Post injection fuel exerts impact on combustion process by causing a great disturbance to flow field during post combustion. Increasing post injection ratio from 4% to 10% at a small post injection duration angle great emission performance is achieved by simultaneous reduction in NOx and soot emissions while only using a slight consumption of ISFC. To summarize, the defeat of traditional NOx-soot trade-off occurs as both NOx and soot emissions are decreased with optimized multiple injection strategy and spray included angle. Particularly, there are respectively four cases with pilot-main injection and two cases with pilot-main-post injection, that achieve simultaneous reduction in NOx emissions, soot emission, and ISFC, compared to the prototype.
Funder
National Natural Science Foundation of China
National High Technology Research and Development Program of China
Subject
Mechanical Engineering,Aerospace Engineering